Anatomical and Scanning Electron Microscopic Characteristics of the Tongue in the Pampas Deer (Cervidae: Ozotoceros bezoarticus, Linnaeus 1758)

SERKAN ERDOĞAN1* AND WILLIAM PÉREZ2

1Department of Anatomy, Faculty of Veterinary Medicine, Dicle University, 21280 Diyarbakir, Turkey
2Department of Anatomy, Faculty of Veterinary Medicine, University of the Republic, 11600 Montevideo, Uruguay

KEY WORDS anatomy; scanning electron microscopy; tongue; deer

ABSTRACT This study represents the first definitive anatomical description of the tongue and lingual papillae of the pampas deer and compares the different information on the morphology of the other ruminant species available in the literature. In this study, the tongues of four adult and one fetal deer were used. The tongue was elongated with an oval or rounded apex. The filiform papillae on the lingual apex were smaller than the ones on the dorsal and lateral surfaces of the lingual body. Two very thin secondary papillary projections were found to emerge from the bilateral sides of some filiform papillae. Spherical fungiform papillae were randomly distributed among filiform papillae on dorsal surface of the lingual body and ventral surface of the apex. More developed conical papillae were observed in the caudal half of the lingual torus, whereas the rostral half of the torus had smaller conical papillae. Each conical papilla included shallow longitudinal groove on its anterior surface and some conical papillae on the lingual torus had bifid sharp apices. On the caudal portion of the torus, we also observed a few fungiform papillae, which were larger than those located on the lingual body. There were no lenticular papillae on the lingual torus, and five to nine round or oval circumvallate papillae were situated on each caudolateral side of the lingual torus. Morphological features of the tongue in the pampas deer were more similar to wild ruminant species than they were to domestic species. Microsc. Res. Tech. 00:000–000, 2013. © 2013 Wiley Periodicals, Inc.

INTRODUCTION The tongue plays a principal role in feeding function, together with other organs within and near the oral cavity. It has a characteristic form and specialized structures in tetrapods, especially mammals (Iwasaki, 2002). An important aspect of morphological studies of the tongue in mammals is the structure and distribution of lingual papillae on its dorsal surface. The results of macroscopic and microscopic observations showed that these features exhibit great variability in relation to the animal’s lifestyle, diet, and adaptation to various environmental conditions and taxonomical features. From a comparative point of view, this variability is significant between high systematic units, such as orders or families, although there are also frequent interspecies differences (Erdogan and Alan 2012; Erdogan et al., 2012; Iwasaki, 2002; Jackowiak and Godynicki, 2004; Kobayashi et al., 2005).

The studies of the ruminant tongue include gross anatomical observations (Emura et al., 2011a,b; Kobayashi et al., 2005; Shao et al., 2010), scanning electron microscopic evaluations (Chamorro et al., 1986; de Paz Cabello et al., 1988; Emura et al., 2011a,b; Kumar et al., 1998; Kurtul and Atalgın, 2008; Tadjalli and Pazhoomand, 2004), and light microscopic assessments (Agungpriyono et al., 1995; Atoji et al., 1998; Kocak Harem et al., 2011; Kokubun et al., 2012; Zheng and Kobayashi 2006). These studies have revealed interspecific variations in general morphology, structure, and distribution of papillae on the dorsal lingual surface.

The pampas deer (Ozotoceros bezoarticus) was once a widespread species, originally distributed in the open grasslands (pampas) across eastern South America, from 5° to 41°S (Jackson and Langguth, 1987). However, habitat loss, unregulated hunting, competition with cattle, and transmission of cattle diseases have caused a drastic decrease in pampas deer populations (Jackson and Giulietti, 1988). Although there are small wild populations in Argentina, Brazil, and Uruguay (González, 1993), it is considered to be in extreme danger of extinction (González and Merino, 2008).

Pampas deer have been observed eating new green growth, shrubs, and herbs. Most of the plant life they consume grows in moist soils. The pampas deer eats less grass and more forbs (flowering broad leafed plants with soft stems) and browse (shoots, leaves, and twigs) (Villa et al., 2008). It is a peculiarity among the...
cervids; most of which; are considered to be either browsers (i.e., the natural diet consists mainly of dicotyledonous forage, like tree foliage, forbs, herbs, or wild fruits) or intermediate feeders (i.e., consuming monocotyledonous forage-grasses to a certain degree, mostly dependent on seasonal variation in forage availability) (Hofmann, 1985).

The majority of the anatomical studies related to pampas deer have focused on the reproductive system (Pérez et al., 2013a, b) and lower digestive system (Pérez et al., 2008; Pérez and Ungerfeld, 2012). Our literature review indicates that no morphological evaluation exists, on the detailed morphological aspects of the tongue in the pampas deer. In this study, our aim is to study comparatively the gross anatomical features of the tongue and scanning electron microscopic morphologies and the topographical distribution of the lingual papillae that reside on all of the lingual surfaces in the pampas deer. Additionally, we will compare our findings with reports on other ruminant species.

MATERIALS AND METHODS

The tongues of four adult pampas deer (*Ozotoceros bezoarticus*) and one fetus were used in this study. The average weight of the mature animals was 14.22 ± 0.92 kg. Precise fetal age was not determined and crown-rump length of the fetus was 136 mm. Animals were obtained from a captive breeding station, “Estación de Cria de Fauna Autóctona,” Pan de Azúcar, Maldonado, Uruguay (ECFA; 34°3′S, 55°1′W; altitude: approximately 200 m). Four dead adult animals and one fetus were evaluated for this research. There were no abnormalities in oral cavity, and the cause of dead was not determined. The animals were dissected and their tongues, after removal, were washed in 0.1 M chilled phosphate buffer (pH-7.4), fixed in 2.5% glutaraldehyde for 6 h, and again washed twice in 0.1 M phosphate buffer (pH-7.4). Secondary fixation was carried out in 1% osmium tetroxide for 1 h and specimens dehydrated by acetone. Then, they were critical point dried and coated with gold palladium. The specimens were observed and photographed under a scanning electron microscope (Jeol JSM-5900LV, Jeol Ltd., Tokyo, Japan). The extracted tissues were examined under a stereomicroscope (Nikon SMZ800, Tokyo, Japan) to determine their general anatomical characteristics before examination by scanning electron microscopy. Terms are used in agreement with the Nomina Anatomica Veterinaria (2012). Data were presented as median ± standard error.

RESULTS

Gross Anatomy

The tongue is composed of three parts: apex, body, and root (Fig. 1a). In the pampas deer, the tongue was fairly elongated and terminated in an oval or rounded apex (Fig. 1a). The widths of the tongue were consistent along its length (22.79 ± 2.58, 25.14 ± 2.15, 29.24 ± 2.10, and 26.38 ± 1.48 mm in the apex, body, torus, and radix, respectively). The total length of the tongue, from its root to the apex, was 112.34 ± 4.93 mm, and the greatest thickness of the tongue was in the torus (15.98 ± 0.46 mm). Other thicknesses were 6.04 ± 0.66, 12.00 ± 0.52, and 12.88 ± 0.86 mm in the apex, body, and radix, respectively. The median sulcus in 31.03 ± 2.30 mm, which extended from the apex to rostral one-third of the tongue, was evident on the dorsal lingual surface (Fig. 1a). The marked trench (fossa linguae) between the rostral two-thirds and caudal one-third part of the body and the lingual torus (torus linguae) just behind it were observed. The caudal one-third of the body was formed by a fairly bulky lingual torus (Fig. 1a). The ventral surface of the tongue was connected to the floor of oral cavity through a broad frenulum (frenulum linguae) at the level of the border between the rostral and central one-third of the tongue (Fig. 2). The anatomical measurements of the tongue were also shown in Table 1.

Scanning Electron Microscopy

Macroscopically, two types of mechanical (filiform and conical) and two types of gustatory (fungiform and circumvallate) papillae were observed on the dorsal surface of the tongue. Filiform papillae, which were the most numerous type of papillae, covered the dorsal and lateral surfaces of the rostral two-thirds of the tongue (Figs. 1b and 1c). In the caudal one-third of the tongue, filiform papillae were located on the lateral surfaces of the tongue only. Other types of mechanical papillae were conical papillae located on the dorsal surface of the lingual torus (Figs. 1d and 1e). A few rounded fungiform papillae were interspersed among the huge conical papillae, especially on the caudal half of the torus (Fig. 1e).

Fungiform papillae were round and distributed randomly, particularly on the rostral one-third of the dorsal surface of the tongue and lingual torus (Figs. 1b, 1c and 1e). Densities of the fungiform papillae on the apex gradually decreased in number toward the medial region of the body. The fungiform papillae of the lingual torus were bigger and more spherical than those located on the apex and body, and were distributed among the many conical papillae of the lingual torus (Fig. 1e). Interestingly, filiform and fungiform papillae were also restricted to the ventral surface of the apex and the lateral edges of the ventral surface of rostral half of the body (Fig. 2). The median region of the ventral surface of the tongue was covered with a smooth mucosa without any mechanical or gustatory papillae. There were no lenticular papillae on the entire dorsal surface of the body (Fig. 1f).

The circumvallate papillae were located on the lateral edges of the caudal half of the lingual torus. In both caudalateral edges, an average of five to nine circumvallate papillae formed a longitudinal ridge (Figs. 1f and 1g). Circumvallate papillae varied in diameter and approached the size of fungiform papillae. The bodies of the circumvallate papillae were surrounded by a continuous trench (Fig. 1g). In contrast to the apex, lingual body, and lingual torus, no mechanical or gustatory papillae were present on the radix of the tongue.
than the ones on the dorsal and lateral surfaces of the lingual body (Table 2, Fig. 3). Spherical or rounded fungiform papillae were randomly distributed and embedded among the short filiform papillae, which angled caudally on the dorsal surface of the apex (Fig. 3). As for the ventral surface of the apex, the shapes and sizes of the fungiform papillae were varied (Table 2), with some whose edges touched each other, forming small clusters (Fig. 4). Most of the fungiform papillae in the ventral surface of the apex were round. The remainder of the papillae were elliptical or irregularly shaped due to being in close contact with one another (Fig. 4). The convex fungiform papillae were covered by squamous epithelial cells, and several taste pores were observed on the convex dorsal surface at higher magnification. Taste pores were especially numerous on the dorsal surface of the fungiform papillae on the ventral surface of the tongue (Fig. 4).

We also noted that smaller filiform papillae (Table 2) on the ventral apex of the tongue were more irregular than those on the dorsal surface of the apex. Moreover, some thin filiform papillae on the ventral surface of the apex were perpendicular to tongue’s surface or were angled cranially (Figs. 3 and 4).

The filiform papillae of the dorsal surface of the lingual body were of typical triangular shape. Radices of the filiform papillae were bulky and at the surfaces of the papillae there were numerous scale-like structures resulting from desquamated keratinized cells (Fig. 5). The filiform papillae on the surface of the lingual body, compared to those localized on the apex and ventral surface of the tongue, were neither not irregular in shape nor angled in different directions, but were angled typically in the caudal direction (Figs. 5a and 5b). On the rostral half of the lingual body, fungiform papillae were especially numerous and randomly distributed among densely distributed filiform papillae.
In addition to these filiform papillae on the rostral portion of the body that tilted caudally (Fig. 5b), we observed filiform papillae oriented perpendicular to the surface of the tongue on the caudal portion of the body and just in front of lingual torus. These large filiform papillae on the caudal portion of the body possessed pointed tips that tilted caudally (Fig. 5d). Two secondary papillary projections were significantly thin, and emerged from bilateral sides of some filiform papillae on the rostral half of the lingual body (Fig. 5d).

More developed and higher conical papillae (Table 2), the sharp apices of which were pointed towards the lingual radix, were observed in the caudal half of the lingual torus (Fig. 5d); however, some conical papillae located centrally on the lingual torus had bifid sharp apices (Fig. 6e). In addition to the presence of conical papillae on the caudal portion of torus, we observed a few fungiform papillae among large conical papillae (Figs. 6b and 6c). Round fungiform papillae were larger than those located on the lingual body (Table 2 and Fig. 6c). Although conical papillae were located on both the dorsal and lateral surfaces of the lingual torus (Figs. 6a and 6b), round fungiform papillae were located on the dorsal surface only of the caudal half of the torus (Fig. 6b).

TABLE 1. The macroanatomic measurements of the tongue (mm) (mean ± SE)

<table>
<thead>
<tr>
<th></th>
<th>Total length of the tongue</th>
<th>Length of the median sulcus</th>
<th>Widths of the tongue</th>
<th>Thicknesses of the tongue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112.34 ± 4.93</td>
<td>31.03 ± 2.30</td>
<td>Apex</td>
<td>22.79 ± 2.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Body</td>
<td>25.14 ± 2.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Torus</td>
<td>29.24 ± 2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radix</td>
<td>26.38 ± 1.48</td>
</tr>
<tr>
<td>Apex</td>
<td>6.04 ± 0.66</td>
<td>12.00 ± 0.52</td>
<td>15.98 ± 0.46</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>12.88 ± 0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2. The measurements of the lingual papillae according to localization (µm) (mean ± SE)

<table>
<thead>
<tr>
<th>Filiform papillae</th>
<th>Fungiform papillae</th>
<th>Conical papillae</th>
<th>Circumvallate papillae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal surface of the lingual apex</td>
<td>Ventrally</td>
<td>Lingual body</td>
<td>Ventrally</td>
</tr>
<tr>
<td></td>
<td>of the lingual apex</td>
<td></td>
<td>of the lingual apex</td>
</tr>
<tr>
<td></td>
<td>of the lingual apex</td>
<td></td>
<td>of the lingual apex</td>
</tr>
<tr>
<td></td>
<td>358.00 ± 8.68</td>
<td></td>
<td>424.00 ± 16.07</td>
</tr>
</tbody>
</table>

(Figs. 5a and 5c). In addition to these filiform papillae on the rostral portion of the body that tilted caudally (Fig. 5b), we observed filiform papillae oriented perpendicular to the surface of the tongue on the caudal portion of the body and just in front of lingual torus. These large filiform papillae on the caudal portion of the body possessed pointed tips that tilted caudally (Fig. 5d). Two secondary papillary projections were significantly thin, and emerged from bilateral sides of some filiform papillae on the rostral half of the lingual body (Fig. 5d).

More developed and higher conical papillae (Table 2), the sharp apices of which were pointed towards the lingual radix, were observed in the caudal half of the lingual torus (Fig. 6b), whereas the rostral half of the dorsal surface of the torus had smaller and shorter conical papillae (Table 2 and Fig. 6a). The basal portions of the conical papillae were fairly bulky and each conical papilla included a shallow longitudinal groove on its anterior surface (Figs. 6b and 6d). The papillary surfaces of the conical papillae were smooth and there were no secondary projections (Fig. 6d); however, some conical papillae located centrally on the lingual torus had bifid sharp apices (Fig. 6e). In addition to the presence of conical papillae on the caudal portion of torus, we observed a few fungiform papillae among large conical papillae (Figs. 6b and 6c). Round fungiform papillae were larger than those located on the lingual body (Table 2 and Fig. 6c). Although conical papillae were located on both the dorsal and lateral surfaces of the lingual torus (Figs. 6a and 6b), round fungiform papillae were located on the dorsal surface only of the caudal half of the torus (Fig. 6b).
Round or oval circumvallate papillae were located parallel to the median line of the tongue on each caudolateral side of the lingual torus. Each circumvallate papilla had a flat surface and the bodies of vallate papillae were surrounded by a prominent and continuous gustatory groove (Table 2, Fig. 7). Small conical papillae of the lingual torus were located near the circumvallate papillae (Fig. 7).

In addition to the observation of mature tongues, we also observed a fetal tongue. In the fetal tongue, we could not detect filiform or circumvallate papillae on its dorsal surface, but conical and fungiform papillae were developing on the lingual torus and were appeared as papillary swellings during the developmental process (Fig. 8).

DISCUSSION

Different morphological structures of the tongues of vertebrates are specialized to fulfill different functions, such as swallowing, water uptake, capturing and manipulating the food, grooming, vocal modulation, and suckling (Kilinc et al., 2010; Mançanares et al.,
Furthermore, the mammalian tongue exhibits different morphological adaptations in different species. The distribution of the different papillae on the various surfaces of the tongue is characteristic of a genus and may even be distinctive among different species. One of the elements that contribute most to the morphological, distribution, and type of papillae is diet (Pastor et al., 2011). Morphological differences and variations appearing in the tongue are directly associated with dietary specializations and food type, as well as adaptations to various environmental conditions (Iwasaki, 2002).

In this study, we determined the presence of fungiform and filiform papillae on the ventral surface of the apex of the tongue, in addition to its dorsal surface. Filiform papillae of the pampas deer were densely distributed over the entire dorsal surface of the tongue except for the radix and lingual torus, and these increased in size from the lingual apex to the lingual body. Similarly, a great number of filiform papillae are present particularly on the rostral half of the dorsal lingual surface in goats (Kumar et al., 1998; Kurtul and Atalgin, 2008), goitered gazelle (Kocak Harem et al., 2011), sitatunga (Emura et al., 2011b), and barking deer (Adnyane et al., 2011). However, in some ruminants, the filiform papillae consist of a larger main papilla with smaller secondary papillae (Agungpriyono et al., 1995; Emura et al., 2011a,b; Kocak Harem et al., 2011; Kurtul and Atalgin, 2008). Three to six secondary projections on the filiform papillae were reported in the Saanen goat (Kurtul and Atalgin, 2008), whereas two were reported in the Formosan serow (Atoji et al., 1998) and goitered gazelle (Kocak Harem et al., 2011), two to three in the lesser mouse deer (Agungpriyono et al., 1995), six to eight in goats (Kumar et al., 1998), two to four in Bactrian camel (Erdunchaolu et al., 2001), and one projection was reported in a one humped camel (Qayyum et al., 1988). Similar to the Formosan serow (Atoji et al., 1998) and goitered gazelle (Kocak Harem et al., 2011), there were two secondary papillae that originated from the basal portion of the main filiform papilla on the rostral half of the tongue in the pampas deer. These secondary papillae were detected on only the rostral half of the tongue in the lesser mouse deer (Agungpriyono et al., 1995) and the lingual apex in the goitered gazelle (Kocak Harem et al., 2011). The tips of the filiform papillae of the lingual apex displayed some sharp-pointed thread-like projections (Kocak Harem et al., 2011; Kumar et al., 1998), and those of the lingual body have two sharply-pointed projections in goitered gazelle (Kocak Harem et al., 2011). In our study, the tips of the filiform papillae, which were distributed on the dorsal lingual surface, possessed only one sharp-pointed tip, and we discovered numerous scale-like structures as a result of desquamated keratinized cells on the surfaces of filiform papillae as reported in the cow (de Paz Cabello et al., 1988) and mazama species (Kokubun 2012; Pastor et al., 2011).
et al., 2012). Differences in the types and distribution of filiform papillae among animals appear to be related to age, food, and feeding, and mastication pattern (Erdunchaolu et al., 2001).

The fungiform papillae were large dome-shaped eminences on the lingual mucosa with almost spherical bodies with a round bases and a convex upper surfaces in the pampas deer. This rounded or convex morphological shape of fungiform papillae are reported in wild (Atoji et al., 1998; Emura et al., 2011a; Kokubun et al., 2011; Kokubun et al., 2012) and domestic ruminants (Emura et al., 2000; Kumar et al., 1998; Kurtul and Atalgin, 2008). In this study, we found that there were numerous fungiform papillae especially on the ventral surface and tip of the apex of the tongue. Likewise, fungiform papillae were also densely distributed on the ventral surface and tip of the tongue in Formosan serow (Atoji et al., 1998), Japanese serow (Funato et al., 1985), roan antelope (Emura et al., 2011a), blackbuck (Emura et al., 1999), Barbary sheep (Emura et al., 2000), and lesser mouse deer (Agungpriyono et al., 1995), and the papillae were smaller than the fungiform papillae of the body. On the other hand, the fungiform papillae in the lesser mouse deer (Agungpriyono et al., 1995) were larger and distributed abundantly at the apex of the tongue. According to Agungpriyono et al. (1995), the apex of the tongue can therefore be considered a special organ, transmitting

Fig. 6. Dorsal surface of the lingual torus. (a) Conical papillae (arrowheads) on the rostral portion of the lingual torus, (b–d) Conical (arrowheads) and fungiform (*) papillae on the caudal portion of the lingual torus, arrows: Shallow groove on anterior surface of the conical papilla, (e) conical papilla with bifid projections (arrows). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
several kinds of sensory information. Different from other ruminants, a few truncated projections emerging from the lateral side of the surface of the fungiform papillae were detected in the one humped camel (Qayyum et al., 1988). In the goitered gazelle (Kocak Harem et al., 2011), two types of fungiform papillae were distinguished according to their localization. The first type included small, round fungiform papillae that were distributed on the lingual apex and body. The second type of fungiform papillae was distributed along the lateral side of the torus. Similar to the gazelle (Kocak Harem et al., 2011), two types of fungiform papillae have been identified in the barking deer (Adnyane et al., 2011) and Formosan serow (Atoji et al., 1998). In the pampas deer, fungiform papillae were also located at the torus of the tongue and were larger than those located on the apex and body, and we also detected bigger fungiform papillae on the caudal part of the lingual torus only. In mazama species (Kokubun et al., 2012), fungiform papillae were found on the central region of the lingual torus. In general, morphostructure and topographical distribution of the fungiform papillae observed in this study were more similar to those reported in the gazelle (Kocak Harem et al., 2011), Formosan serow (Atoji et al., 1998), and mazama species (Kokubun et al., 2012). In some ruminants (Adnyane et al., 2011; Atoji et al., 1998; Kumar et al., 1998; Kurtul and Atalgın, 2008; Tadjalli and Pazhoohmand, 2004; Zheng and Kobayashi 2006) and camels (Erdunchaolu et al., 2001; Qayyum et al., 1988), fungiform papillae had a deep papillary groove, which separated them from the filiform papillae. There were no deep papillary grooves surrounding the fungiform papillae of the pampas deer. The convex fungiform papillae with flat surfaces were covered by squamous epithelial cells, and several taste pores were observed on the convex surface of each papilla. Similar to the pampas deer, taste pores can be observed on the surface of the fungiform papillae in the one humped camel (Qayyum et al., 1988), barking deer (Adnyane et al., 2011), Formosan serow (Atoji et al., 1998), and Japanese serow (Funato et al., 1985). In the goitered gazelle (Kocak Harem et al., 2011) and the goat (Kumar et al., 1998), no taste buds or pores were recognizable on the dorsal surface of the fungiform papillae. Despite the variety of items eaten, deer mostly feed on the soft, juicy parts of plants that are easily digestible, such as new leaves, buds, and flowers. The pampas
deer feeds mainly on grass, but also eats dicotiledo-
near herbs. Despite the fact that pampas deer are
selector ruminants, ingesting mainly buds and new
leaves (Rodrigues and Monteiro-Filho, 1999), their
fungiform papillae were distributed on dorsal and ven-
tral surfaces of the lingual apex, and the dorsal and
lateral surfaces of the lingual body and torus. We pro-
pose that the rich distribution of the gustatory papillae
on these surfaces of the tongue plays an important role
in detecting and selecting nutrients.
In this study, there were about 10–18 circumvallate
papillae on both caudolateral sides of the lingual torus,
which were arranged in one line cranially and each
encircled by a deep groove. The number of the circum-
vallate papillae that are located bilaterally along the
caudolateral side of the lingual torus varies among
ruminants. Twenty-six circumvallate papillae were
described in the Saanen goat (Kurtul and Atalgn,
2008) and the goitered gazelle (Kocak Harem et al.,
2011), 10–13 in barking deer (Adnyane et al., 2011),
two to five in the lesser mouse deer (Agungpriyono
et al., 1995), 23 in the Formosan serow (Atoji et al.,
1998), 20 in the Japanese serow (Funato et al., 1985),
22–28 in the yak (Shao et al., 2010), 22–32 in cattle
(Shao et al., 2010), and 9–12 in the one humped camel
(Qayyum et al., 1988). Vallate papillae were arranged
in two lines in the Saanen goat (Kurtul and Atalgn,
2008), Bactrian camel (Erdunchaolu et al., 2001), and
Mazama americana (Kokubun et al., 2012). The promi-
nent gustatory groove and the annular pad of the sur-
rrounding lingual mucosa were reported in the goitered
gazelle (Kocak Harem et al., 2011), the goat (Kumar
et al., 1998; Kurtul and Atalgn, 2008), the roan antelope
(Emura et al., 2011a), lamb (Tadjalli and Pazhoe-
mand, 2004), and cattle (Chamorro et al., 1986). In
the pampas deer, the annular pad was detected around
certain circumvallate papillae. In the one humped camel
(Quyuum et al., 1988), about two or three vallate papil-
lae were surrounded by primary and secondary
grooves, and unique wart-like papillae were found on
the posterior one-third of the tongue in close proximity
to the circumvallate papillae. Differing from this study
and reports of other ruminants, several foliate papillae
were observed on both caudolateral sides, ventral to
the vallate papillae in the lesser mouse deer (Agung-
priyono et al., 1995).
Conical papillae, described on the lingual torus,
were elongated with a round base and sharp tip with-
out any projections or secondary papillae in the pam-
pas deer. Similarly in the goat (Kumar et al., 1998),
barking deer (Adnyane et al., 2011), goitered gazelle
(Kocak Harem et al., 2011), Formosan serow (Atoji
et al., 1998), and cow (de Paz Cabello et al., 1988), coni-
cal papillae were found on the dorsal and lateral surfa-
ces of the lingual torus. In the cow (de Paz Cabello
et al., 1988) and the goat (Kumar et al., 1998), these
papillae were cone-shaped and oriented at a caudal
angle; they were associated with a distinct groove sur-
rrounding their base and separating them from the rest
of the lingual surface. We could not see similar grooves
in the base of the conical papillae in our study of the
pampas deer. In addition to conical papillae on the lin-
gual torus, numerous lenticular papillae were reported
in domestic ruminants (de Paz Cabello et al., 1988;
Kumar et al., 1998; Kurtul and Atalgn, 2008) and the
goitered gazelle (Kocak Harem et al., 2011). In the Bac-
trian camel (Erdunchaolu et al., 2001), the sitatunga
(Emura et al., 2011b) and the roan antelope (Emura
et al., 2011a), lenticular papillae were reported only on
the lingual torus. In the pampas deer, no lenticular
papillae were found on the lingual torus as reported in
barking deer (Adnyane et al., 2011) and Formosan
serow (Atoji et al., 1998). In this study, it was deter-
mined that the lingual torus possesses only conical
and large fungiform papillae, as in the goitered gazelle
(Kocak Harem et al., 2011), mazama species (Kokubun
et al., 2002), and the Reeves’ muntjac deer (Zheng and
Kobayashi, 2006).
In this detailed study, we determined the topogra-
phy of four types of lingual papillae including filiform,
fungiform, conical, and circumvallate papillae; estab-
lished the presence of fungiform and filiform papillae
on the ventral surface of the apex, in addition to the
dorsal surface; and clarified the special organization of
conical and fungiform papillae on the lingual torus in
the pampas deer. Particularly, we noted the presence
of conical papillae with bifid projections on the dorsal
surface of the torus, and the occurrence of secondary
projections of some filiform papillae. In this study, we
also focused on the general anatomical features of
tongue. In general, this study establishes similarities
in the anatomy of the tongue of the pampas deer with
wild deer species, such as the gazelle and mazama spe-
cies, with special attention to the lingual papillae. In
contrast, our findings indicate few similarities of lin-
gual morphology of pampas deer with domestic
ruminants.

ACKNOWLEDGEMENTS
The authors acknowledge Dr. R. Ungerfeld and the
Intendencia Municipal de Maldonado, for the facilities
to develop research with deer of the ECFA. The
authors would like to thank Dr. Brooke Hopkins
Dubinsky for her valuable contributions to the lan-
guage improvement.

REFERENCES
Adnyane IKM, Zuki AB, Noordin MM, Agungpriyono S. 2011. Mor-
phological study of the lingual papillae in the barking deer, Mun-
Agungpriyono S, Yamada J, Kitamura N, Nisa C, Sigit K, Yamamoto
Y. 1995. Morphology of the dorsal lingual papillae in the lesser
male Formosan serow (Capricornis crispus swinhoei) Anat Histol
Embryol 27:17–19.
Chamorro CA, de Paz P, Sandoval J, Fernandez JG. 1986. Compara-
tive scanning electron-microscopic study of the lingual papillae in
two species of domestic mammals (Equus caballus and Bos taurus)
Comparative scanning electron-microscopic study of the lingual
papillae in two species of domestic mammals (Equus caballus and
Emura S, Tamada A, Hayakawa D, Chen H, Shoumura S. 2000. Mor-
phology of the dorsal lingual papillae in the Barbary sheep, Ammo-
Emura S, Okumura T, Chen H. 2011a. Morphology of the lingual pap-
Emura S, Okumura T, Chen H. 2011b. Morphology of the lingual pap-

